Existence and classification of characteristic points at blow-up for a semilinear wave equation

نویسندگان

  • Frank Merle
  • Hatem Zaag
چکیده

We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution u(x, t), the graph x 7→ T (x) of its blow-up points and S ⊂ R the set of all characteristic points and show that S has an empty interior. Finally, given x0 ∈ S, we show that in selfsimilar variables, the solution decomposes into a decoupled sum of (at least two) solitons, with alternate signs and that T (x) forms a corner of angle π2 at x0. AMS Classification: 35L05, 35L67

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and characterization of characteristic points for a semilinear wave equation in one space dimension

Abstract: We consider the semilinear wave equation with power nonlinearity in one space dimension. We first show the existence of a blow-up solution with a characteristic point. Then, we consider an arbitrary blow-up solution u(x, t), the graph x 7→ T (x) of its blow-up points and S ⊂ the set of all characteristic points, and show that the S has an empty interior. Finally, given x0 ∈ S, we show...

متن کامل

Slow Blow up Solutions for Certain Critical Wave Equations

We describe in this article two recent results [11], [12], obtained by the author jointly with W. Schlag and D. Tataru, about singular solutions for the critical wave maps equation, as well as the critical focussing semilinear wave equation. Specifically, the first result [11] establishes for the first time the conjectured formation of singularities for co-rotational wave maps into the sphere S...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Blow up for the Semilinear Wave Equation in Schwarzschild Metric

We study the semilinear wave equation in Schwarzschild metric (3 + 1 dimensional space time). First, we establish that the problem is locally well posed in H for any σ > 1; then we prove the blow up of the solution for every p > 1 and non negative initial data. The work is dedicated to prof. Yvonne Choquet Bruhat in occasion of her 80th year.

متن کامل

The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space

In this paper‎, ‎the existence and uniqueness of the ‎solution of a nonlinear fully fuzzy implicit integro-differential equation‎ ‎arising in the field of fluid mechanics is investigated. ‎First,‎ an equivalency lemma ‎is ‎presented ‎by‎ which the problem understudy ‎is ‎converted‎ to ‎the‎ two different forms of integral equation depending on the kind of differentiability of the solution. Then...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010